# 25G SFP28 Direct Attach Cable (DAC)

A high-performance cable perfectly suited to short distance applications in data centres.



Cost-effective Copper solution



Low power consumption



Lowest total system EMI



Optimised for signal integrity

fibre optic assembly specialists



### DIRECT ATTACH CABLE (DAC)

SFP28 DACs (Direct Attach Cables) consist of two SFP28 modules with a copper cable permanently embedded into each end. The SFP28 passive cable assemblies are high-performance, cost-effective interconnect solutions, targeted at enabling 25Gb/s to 28Gb/s applications, such as 25Gb/s Ethernet. In addition to this, DACs are ideal for application with high-speed servers, making them an ideal cable for Inter Rack Connection in data centres.

SFP28 Copper cables allow hardware manufactures to achieve high port density, configurability and utilisation, at a very low cost and reduced power budget.

This DAC is compliant with SFF-8432 and SFF-8402 specifications. Various choices of wire gauge are available from 30 to 26 AWG with various choices of cable length (up to 5m).

#### APPLICATION

- Ethernet
- Networked storage systems
- External storage systems
- Data Centre networking
- Hubs, Switches, Routers, Servers

Next Page; Features and Benefits....

fibre optic assembly specialists

sales@leaderoptec.com

www.leaderoptec.com

# DIRECT ATTACH CABLE (DAC)



#### **KEY FEATURES**

- Up to 25.78125 Gbps data rate
- Up to 5 metre transmission
- Hot-pluggable SFP 20PIN footprint
- Compatible to SFP20 MSA
- Compatible to SFF-8402 and SFF-8432
- Temperature range: 0-70 °C
- ROHS Compatible

#### **SPECIFICATIONS**

#### BENEFITS

- Cost-effective copper solution
- Lowest total system power solution
- Lowest total system EMI solution
- Optimised design for signal integrity
- Low power consumption
- Improved pluggable form factor (IPF) compliant for enhanced ENU/EMC performance

| Parameter                                        | Symbol         | Min    | Тур. | Max   | Unit | Note                 |
|--------------------------------------------------|----------------|--------|------|-------|------|----------------------|
| Recommended Operating Conditions                 |                |        |      |       |      |                      |
| Storage Temp                                     |                | -40    |      | +85   | °C   |                      |
| Operating Case Temp                              | Тс             | 0      |      | +70   | °C   |                      |
| Power Supply Voltage                             | Vcc3           | 3.14   | 3.3  | 3.47  | V    |                      |
| High Speed Characteristics                       |                |        |      |       |      |                      |
| Differential Impedance                           | TDR            | 90     | 100  | 110   | Ώ    |                      |
| Insertion Loss                                   | SDD21          | -22.48 |      |       | dB   | At 12.8906 GHz       |
| Differential Return Loss                         | SDD11<br>SDD22 |        |      | See 1 | dB   | At 0.05 to 4.1 GHz   |
|                                                  |                |        |      | See 2 |      | At 4.1 to 19 GHz     |
| Common mode to common<br>mode output return loss | SCC11<br>SCC22 |        |      | -2    | dB   | At 0.2 to 19 GHz     |
| Differential to common<br>mode return loss       | SCD11<br>SCD22 |        |      | See 3 | dB   | At 0.01 to 12.89 GHz |
|                                                  |                |        |      | See 4 |      | At 12.89 to 19 GHz   |
| Differential to common<br>Mode Conversion Loss   | SCD211L        |        |      | -10   | dB   | At 0.01 to 12.89 GHz |
|                                                  |                |        |      | See 5 |      | At 12.89 to 15.7 GHz |
|                                                  |                |        |      | -6.3  |      | At 15.7 to 19 GHz    |
| Notes:                                           |                |        |      |       |      |                      |

- Reflection Coefficient given by equation SDD11(dB) < 16.5 2  $\times$  SQRT(f), with f in GHz
- Reflection Coefficient given by equation SDD11(dB) < 10.66 14 × log10(f/5.5), with f in GHz</li>
  - Reflection Coefficient given by equation SCD11(dB) < 22 (20/ 25.78)\*f, with f in GHz
  - Reflection Coefficient given by equation SCD11(dB) < 15 (6/25. /8)\*f, with f in GH;</li>
  - Reflection Coefficient given by equation SCD21(dB) < 27 (29/22)\*f, with f in GHz

sales@leaderoptec.com

# DIRECT ATTACH CABLE (DAC)



### **PIN DESCRIPTIONS**

| Pin                           | Logic      | Symbol   | Name/Description                | Note |  |
|-------------------------------|------------|----------|---------------------------------|------|--|
| SFP28 Pin Function Definition |            |          |                                 |      |  |
| 1                             |            | VeeT     | Transmitter Ground              |      |  |
| 2                             | LV-TTL-O   | TX_Fault | N/A                             | 1    |  |
| 3                             | LV-TTL-I   | TX_DIS   | Transmitter Disable             | 2    |  |
| 4                             | LV-TTL-I/O | SDA      | Tow Wire Serial Data            |      |  |
| 5                             | LV-TTL-I   | SCL      | Tow Wire Serial Clock           |      |  |
| 6                             |            | MOD-DEF0 | Module present, connect to VeeT |      |  |
| 7                             | LV-TTL-I   | RSO      | N/A                             | 1    |  |
| 8                             | LV-TTL-O   | LOS      | LOS of Signal                   | 2    |  |
| 9                             | LV-TTL-I   | RS1      | N/A                             | 1    |  |
| 10                            |            | VeeR     | Receiver Ground                 |      |  |
| 11                            |            | VeeR     | Receiver Ground                 |      |  |
| 12                            | CML-O      | RD-      | Receiver Data Inverted          |      |  |
| 13                            | CML-O      | RD+      | Reciever Data Non Inverted      |      |  |
| 14                            |            | VeeR     | Receiver Ground                 |      |  |
| 15                            |            | VccR     | Receiver Supply 3.3V            |      |  |
| 16                            |            | VccT     | Transmitter Supply 3.3V         |      |  |
| 17                            |            | VeeT     | Transmitter Ground              |      |  |
| 18                            | CML-I      | TD+      | Transmitter Data Non Inverted   |      |  |
| 19                            | CML-I      | TD-      | Transmitter Data Inverted       |      |  |
| 20                            |            | VeeT     | Transmitter Ground              |      |  |
| Notes                         |            |          |                                 |      |  |

• Signals not supported in SFP+ Copper pulled down to VeeT with 30K ohms resistor

Passive cable assemblies do not support LOS and TX\_DIS

fibre optic assembly specialists

# DIRECT ATTACH CABLE (DAC)



### PIN DESCRIPTIONS



### MECHANICAL SPECIFICATIONS

### MECHANICAL SPECIFICATIONS

| Length (M) | Cable AWG |
|------------|-----------|
| 1          | 30        |
| 2          | 30        |
| 3          | 30/26     |
| 4          | 26        |
| 5          | 26        |

This connector is compatible with the SFF-8432 specification.



### **REGULATORY COMPLIANCE**

| Feature                                                 | Test Method                                                          | Performance                                                                        |  |  |
|---------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------------|--|--|
| Electrostatic Discharge<br>(ESD) to the Electrical Pins | MIL-STD-883C Method 3015.7                                           | Class 1 (>2000 Volts)                                                              |  |  |
| Electromagnetic<br>Interference(EMI)                    | FCC Class B                                                          | Compliant with Standards                                                           |  |  |
|                                                         | CENELEC EN55022 Class B                                              |                                                                                    |  |  |
|                                                         | CISPR22 ITE Class B                                                  |                                                                                    |  |  |
| RF Immunity (RFI)                                       | IEC61000-4-3                                                         | Typically Show no Measurable Effect from<br>a 10V/m Field Swept from 80 to 1000MHz |  |  |
| RoHS Compliance                                         | RoHS Directive 2011/65/EU &<br>Amendment Directives (EU)<br>2015/863 | RoHS (EU) 2015/863 compliant                                                       |  |  |
| REACH Compliance                                        | REACH Regulation (EC) No<br>1907/2006                                | REACH (EC) No 1907/2006 compliant                                                  |  |  |